Series Tests Examples

Math 107

April 14, 2018

- $\boldsymbol{n}^{\text {th }}$-Term Test: Consider the series $\sum_{n=1}^{\infty} \frac{3^{n}}{1+3^{n}}$. Then

$$
\lim _{n \rightarrow \infty} \frac{3^{n}}{1+3^{n}} \stackrel{\mathrm{~L}^{\prime} \mathrm{H}}{=} \lim _{n \rightarrow \infty} \frac{\ln (3) 3^{n}}{\ln (3) 3^{n}}=\lim _{n \rightarrow \infty} 1=1 \neq 0 .
$$

Therefore the series diverges by the $n^{\text {th }}$-Term Test since the limit of the summands does not equal zero. Note that we are allowed to use L'Hospital's Rule here since

$$
\lim _{n \rightarrow \infty} 3^{n}=\lim _{n \rightarrow \infty}\left(1+3^{n}\right)=\infty
$$

- $\boldsymbol{n}^{\text {th }}$-Term Test: Consider the series $\sum_{n=1}^{\infty} \cos (n)$. Note $\lim _{n \rightarrow \infty} \cos (n) \neq 0$ since the limit does not exist. Thus the series diverges by the $n^{\text {th }}$-Term Test.
- Integral Test: Consider the series $\sum_{n=1}^{\infty} \frac{1}{1+n^{2}}$. Observe that $n^{2}>0$ and so $1+n^{2}>0$ and so $\frac{1}{1+n^{2}}>0$. Thus our summands are positive.
Now observe that

$$
\frac{1}{1+(n+1)^{2}}=\frac{1}{n^{2}+2 n+2}<\frac{1}{1+n^{2}}
$$

since $n^{2}+2 n+2>1+n^{2}$. Therefore our summands are decreasing as well as being positive. Thus we may use the Integral Test by observing the improper integral $\int_{1}^{\infty} \frac{1}{1+x^{2}} \mathrm{~d} x$. Recall

$$
\left.\int_{1}^{\infty} \frac{1}{1+x^{2}} \mathrm{~d} x=\lim _{b \rightarrow \infty} \arctan (x)\right]_{1}^{b}=\frac{\pi}{2}-\frac{\pi}{4}=\frac{\pi}{4}
$$

Therefore the improper integral $\int_{1}^{\infty} \frac{1}{1+x^{2}} \mathrm{~d} x$ converges. Thus by the Integral Test, the series $\sum_{n=1}^{\infty} \frac{1}{1+n^{2}}$ converges as well.

- Integral Test: Consider the series $\sum_{n=2}^{\infty} \frac{1}{n \ln (n)}$. Observe that $n \geq 2$ and so $\ln (n)>0$ and so $\frac{1}{n \ln (n)}>0$. Thus our summands are positive.
Now observe that

$$
\frac{1}{(n+1) \ln (n+1)}=\frac{1}{n \ln (n+1)+\ln (n+1)}<\frac{1}{n \ln (n)}
$$

since $n \ln (n+1)+\ln (n+1)>n \ln (n)$. Thus our summands are decreasing as well as positive. Thus we may use the Integral Test by observing the improper integral $\int_{2}^{\infty} \frac{1}{x \ln (x)} \mathrm{d} x$. Recall

$$
\left.\int_{2}^{\infty} \frac{1}{x \ln (x)} \mathrm{d} x=\lim _{b \rightarrow \infty} \ln (\ln (x))\right]_{2}^{b}=\infty
$$

Therefore the improper integral $\int_{2}^{\infty} \frac{1}{x \ln (x)} \mathrm{d} x$ diverges. Thus by the Integral Test, we know that the series $\sum_{n=2}^{\infty} \frac{1}{n \ln (n)}$ diverges as well.

- \boldsymbol{p}-Test: The series $\sum_{n=1}^{\infty} \frac{1}{n^{\frac{1}{2}}}$ diverges by the p-Test since $\frac{1}{2} \leq 1$.
- Geometric Series: Consider $\sum_{n=0}^{\infty}(-3)^{-n}$. Observe that $(-3)^{-n}=\left(-\frac{1}{3}\right)^{n}$ and the series $\sum_{n=1}^{\infty}\left(-\frac{1}{3}\right)^{n}$ converges since $\left|-\frac{1}{3}\right|<1$. Specifically, we know that the series converges to $\frac{1}{1-\left(-\frac{1}{3}\right)}=\frac{3}{4}$.
- Geometric Series Test: Consider $\sum_{n=0}^{\infty}\left(-\frac{\pi}{e}\right)^{n}$. This series diverges since $\left|-\frac{\pi}{e}\right| \geq 1$.
- Direct Comparison Test: Consider the series $\sum_{n=1}^{\infty} \frac{5+2 \cos (n)}{n}$. Note that we know $-1 \leq \cos (n) \leq 1$ and therefore $-2 \leq \cos (n) \leq 2$ and so $3 \leq 5+2 \cos (n) \leq 7$. Therefore $\frac{3}{n} \leq \frac{5+2 \cos (n)}{n} \leq \frac{7}{n}$. Note that $\sum_{n=1}^{\infty} \frac{3}{n}$ diverges by the p-Test. Therefore $\sum_{n=1}^{\infty} \frac{5+2 \cos (n)}{n}$ diverges by the Direct Comparison Test, since it is greater than or equal to a positive series that diverges.
- Limit Comparison Test: Consider the series $\sum_{n=1}^{\infty} \frac{2 n^{2}+60 n+1}{3 n^{5}-800 n^{4}+n^{3}-7 n-6}$. Let us compare this with the simpler series $\sum_{n=1}^{\infty} \frac{1}{n^{3}}$. We see that

$$
\begin{array}{r}
\lim _{n \rightarrow \infty}\left(\frac{2 n^{2}+60 n+1}{3 n^{5}-800 n^{4}+n^{3}-7 n-6}\right) /\left(\frac{1}{n^{3}}\right)=\lim _{n \rightarrow \infty}\left(\frac{2 n^{5}+60 n^{4}+n^{3}}{3 n^{5}-800 n^{4}+n^{3}-7 n-6}\right) \\
=\frac{2}{3}>0 .
\end{array}
$$

Therefore the two series do the same thing. Since we already know that $\sum_{n=1}^{\infty} \frac{1}{n^{3}}$ converges (by the p-Test or Integral Test), we may then conclude that the series $\sum_{n=1}^{\infty} \frac{2 n^{2}+60 n+1}{3 n^{5}-800 n^{4}+n^{3}-7 n-6}$ converges as well.

- Ratio Test: Consider the series $\sum_{n=1}^{\infty} \frac{(n!)^{2}}{(2 n)!}$. Then

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{((n+1)!)^{2}}{(2(n+1))!} \cdot \frac{(2 n)!}{(n!)^{2}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(2 n)!(n+1)!(n+1)!}{(2 n+2)!(n)!(n)!}\right| \\
= & \lim _{n \rightarrow \infty}\left|\frac{(2 n)!}{(2 n+2)!} \cdot \frac{(n+1)!}{n!} \cdot \frac{(n+1)!}{n!}\right|=\lim _{n \rightarrow \infty}\left|\frac{(n+1)(n+1)}{(2 n+2)(2 n+1)}\right|=\frac{1}{4}<1 .
\end{aligned}
$$

Thus the series converges by the Ratio Test.

- Ratio Test: Consider the series $\sum_{n=1}^{\infty} \frac{n!}{(n+1)^{2} 2^{n}}$. Using the Ratio Test, we can see that

$$
\lim _{n \rightarrow \infty}\left|\frac{(n+1)!}{(n+2)^{2} 2^{n+1}} \cdot \frac{(n+1)^{2} 2^{n}}{n!}\right|=\lim _{n \rightarrow \infty}\left|\frac{(n+1)(n+1)^{2}}{2(n+2)^{2}}\right|
$$

diverges. Therefore the series diverges.

- Alternating Series Test: Consider the series $\sum_{n=1}^{\infty}(-1)^{n} \frac{n}{n^{2}+1}$. We know that $n>0$ and so $n^{2}+1>0$ and so $\frac{n}{n^{2}+1}>0$. Furthermore, we can see that $\frac{n+1}{(n+1)^{2}+1}<\frac{n}{n^{2}+1}$ since $\left(n^{2}+1\right)(n+1)<\left((n+1)^{2}+1\right) n$ since $n^{3}+n^{2}+n+1<n^{3}+2 n^{2}+2 n$. Thus the absolute value of our summands is decreasing.
Now we can use L'Hospital's Rule to show that $\lim _{n \rightarrow \infty} \frac{n}{n^{2}+1}=\lim _{n \rightarrow \infty} \frac{1}{2 n}=0$. Therefore by the Alternating Series Test, the series converges.
- Alternating Series Test: Consider the series $\sum_{n=2}^{\infty}(-1)^{n} \frac{\cos \left(\frac{1}{n}\right)}{n}$. First note that $\cos (x)$ is positive for when $x \leq \frac{\pi}{2}$ and $\frac{1}{n}<1<\frac{\pi}{2}$ for all $n \geq 2$. Therefore $\cos \left(\frac{1}{n}\right)$ is positive. Furthermore, $\frac{\cos \left(\frac{1}{n}\right)}{n}$ is then positive.
To show that $\frac{\cos \left(\frac{1}{n}\right)}{n}$ is decreasing, let us observe that the derivative is

$$
\frac{1}{n^{3}} \sin \left(\frac{1}{n}\right)-\frac{1}{n^{2}} \cos \left(\frac{1}{n}\right)=\frac{\sin \left(\frac{1}{n}\right)-n \cos \left(\frac{1}{n}\right)}{n^{3}}
$$

Since $\sin (x)<\cos (x)$ for $0<x<\frac{\pi}{4}$ and since $\frac{1}{n}<\frac{\pi}{4}$ for all $n \geq 2$, we know that $\sin \left(\frac{1}{n}\right)<\cos \left(\frac{1}{n}\right)$ and so $\sin \left(\frac{1}{n}\right)<n \cos \left(\frac{1}{n}\right)$ and so $\sin \left(\frac{1}{n}\right)-n \cos \left(\frac{1}{n}\right)<0$. Therefore the derivative is negative and so our summands are decreasing.
Now observe that $\lim _{n \rightarrow \infty} \frac{\cos \left(\frac{1}{n}\right)}{n}=\lim _{n \rightarrow \infty} \cos \left(\frac{1}{n}\right) \times \lim _{n \rightarrow \infty} \frac{1}{n}=1 \times 0=0$. Thus by the Alternating Series Test, $\sum_{n=2}^{\infty}(-1)^{n} \frac{\cos \left(\frac{1}{n}\right)}{n}$ converges.

- Absolute Convergence: Consider the series $\sum_{n=1}^{\infty} \frac{\cos (n)}{n^{2}}$. We know that $\left|\frac{\cos (n)}{n^{2}}\right| \leq \frac{1}{n^{2}}$. Therefore $\sum_{n=1}^{\infty}\left|\frac{\cos (n)}{n^{2}}\right|$ converges by the Direct Comparison Test. Therefore $\sum_{n=1}^{\infty} \frac{\cos (n)}{n^{2}}$ converges absolutely.

